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Abstract: As  a  computing  paradigm  that  combines  temporal  and  spatial  computations,  dynamic  reconfigurable  computing
provides  superiorities  of  flexibility,  energy  efficiency  and  area  efficiency,  attracting  interest  from  both  academia  and  industry.
However,  dynamic  reconfigurable  computing  is  not  yet  mature  because  of  several  unsolved  problems.  This  work  introduces
the concept,  architecture,  and compilation techniques of dynamic reconfigurable computing. It  also discusses the existing ma-
jor challenges and points out its potential applications.
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1.  Introduction

Reconfigurable  computing  has  drawn  wide  attention  in
both academia and industry  in  the past  decade,  and respect-
ive  commercial  products  are  quickly  emerging[1−10].  The pop-
ularity  of  reconfigurable  computing  is  mainly  due  to  the  fol-
lowing  reasons.  First,  energy  efficiency  has  become  a  more
important  criterion  than  performance.  Therefore,  computing
infrastructures need to reduce power consumption while pur-
suing high performance and reconfigurable computing archi-
tectures provide higher energy efficiency compared to gener-
al-purpose  processors[11].  Second,  it  is  essential  for  comput-
ing architectures to keep high flexibility while improving per-
formance[12, 13].  ASIC  designs  can  achieve  optimal  perform-
ance, and thus custom function modules are increasingly integ-
rated  into  a  system  on  chip  (SoC)  to  form  a  heterogeneous
computing  architecture.  However,  due  to  the  weak  flexibility
of  ASIC  designs,  resources  cannot  be  reused  and  they  can
only  perform  a  specific  task.  These  modules  probably  cannot
run at  the  same time,  leading to  low resource  utilization  and
low area efficiency from the view of the SoC. Meanwhile, recon-
figurable  architectures  take  advantage  of  both  spatial  do-
main  and time domain  computing,  which improves  area  effi-
ciency  while  achieving  comparable  performance  with  ASIC
designs.  Finally,  economy  is  another  important  factor.  As
CMOS technology progresses to below 22 nm, the non-recur-
ring engineering cost of  chip production becomes ever more
expensive  and  small-quantity  dedicated  circuits  are  difficult
to  recover  the  cost.  Therefore,  it  is  essential  to  replace  these
dedicated  designs  with  programmable  general-purpose  pro-
cessing  architectures[14, 15]. Fig.  1 compares  different  chips  in
terms of  software and hardware programmability.  A  dynamic
reconfigurable computing chip is a promising alternative due
to its strong software and hardware programmability.

Reconfigurable computing is not a new concept. As early

as  the 1960s,  Prof.  Gerald Estrin  of  UCLA proposed that  com-
puters can be composed of  a  main processor and an array of
reconfigurable  hardware[16].  The  main  processor  is  respons-
ible  for  controlling  the  behavior  of  the  reconfigurable  hard-
ware.  The latter  accelerates  the execution of  specific  tasks  by
tailoring  and  reconfiguration  according  to  the  computing
characteristics  of  the  target  applications[17, 18].  However,  this
innovative concept was limited by the semiconductor techno-
logy  at  that  time  and  did  not  receive  much  attention.  In  the
next  few  decades,  the  computing  architectures  evolved  in
two  primary  groups,  ASICs  and  general-purpose  processors
(GPPs).  The  advantages  and  disadvantages  of  these  two
groups  are  prominent.  The  reconfigurable  architectures  take
advantage  of  both  ASICs  and  GPPs,  and  deliver  a  reasonable
tradeoff  between  performance,  power,  and  flexibility.  In  the
1990s,  reconfigurable  computing  gradually  attracted  more
interest  and  was  widely  studied  by  researchers.  In  1999,  the
Reconfigurable  Technology  Research  Center  of  the  Uni-
versity of California, Berkeley, proposed a more general defini-
tion  of  reconfigurable  architectures,  as  follows:  1)  the  functi-
onal units on the chips should have post-fabrication program-
mability (i.e, the function of the hardware units can be recon-
figured after silicon implementation); and 2) it should be able
to  achieve  the  spatial  mapping  of  algorithms  to  computati-
onal engines. Computing methods with these two characteri-
stics  can  be  classified  as  reconfigurable  computing[19].  This
definition  highlights  two  major  features  that  distinguish  re-
configurable  architectures  from  other  computing  architec-
tures.

From  the  perspective  of  implementation,  reconfigurable
architectures mainly include FPGAs and coarse-grained recon-
figurable  arrays  (CGRAs).  FPGA is  an early  form of  reconfigur-
able  computing  whose  development  continues  today.  Xilinx
developed  the  world’s  first  FPGA  in  1986[20],  and  has  since
continuously  improved  the  structure,  technology,  and  scale
of  the  chip.  FPGAs  were  primarily  utilized  for  functional  veri-
fication  of  a  system  design  or  as  an  alternative  for  ASICs  to
implement some functions in a system. Thanks to the increas-
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ingly  abundant  resources  on  a  chip  and  the  fast  develop-
ment  of  CAD  tools  based  on  high-level  programming  lan-
guage,  FPGAs  are  now  widely  employed  as  accelerators  in
the  mainstream  computing  infrastructures.  For  instance,  In-
tel  acquired Altera and integrated FPGA using a Xeon CPU as
an  accelerator[21];  IBM  released  SuperVessel  cloud  server
based  on  GPU  and  FPGA[22];  Microsoft  launched  a  FPGA-
based  could  server  Azure[23].  However,  due  to  the  fine-
grained  logic  cell  and  static  reconstruction,  FPGAs  have  the
drawbacks  of  low  area  efficiency,  high  power  consumption,
large configuration bit-stream and long reconfiguration time.
To  mitigate  these  inefficiencies,  recent  FPGAs  have  integ-
rated  various  hard  IPs  and  employed  techniques  such  as
block-based  partial  reconfiguration[24].  Some  researchers
even  proposed  to  implement  virtual  CGRAs  in  FPGAs[25].  In
contrast, CGRAs provide coarse-grained computational granu-
larity  and  structure  that  better  match  the  need  of  applica-
tions.  Compared  with  FPGAs,  CGRAs  have  great  advantages
in  area  efficiency,  power  efficiency  and  reconfiguration  time.
For  example,  the  typical  reconfiguration  time  of  FPGAs
ranges from several hundred milliseconds to several  seconds,
while  for  CGRAs,  reconfiguration  only  takes  a  few  nano-
seconds  to  several  hundred  nanoseconds.  Consequently,
CGRAs  are  also  called  dynamic  reconfigurable  architectures.
Since  the  1990s,  a  number  of  influential  CGRAs—such  as
Morphosys[26],  ADRES[27],  PACT  XPP[28],  and  REMUS[29]—have
been  developed,  targeting  the  applications  of  signal  pro-
cessing,  multimedia,  and  so  on.  In  recent  years,  researchers
have  continued  to  study  the  design  of  CGRAs  and  have  pro-
posed  many  latest  implementations,  such  as  Plasticine[1],
CGRA-ME[30],  PX-CGRA[31],  i-DPs  CGRA[32],  dMT-CGRA[33].  How-
ever,  CGRAs  are  not  yet  widely  used  in  industry  due  to  their
inconsistent  structures,  and  immature  programming  and
compilation tools, which will be explained in detail later on.

There are many previous surveys on reconfigurable com-
puting[12, 13, 34−37].  However,  most  of  them  focused  on  FPGA
technology,  with  little  to  do  with  CGRAs.  Given  that  FPGAs
are  relatively  mature,  while  CGRAs  still  have  many  unsolved

problems  and  are  far  from  large-scale  commercial  utilization,
this paper focus on CGRAs, which employ a dynamically recon-
figurable computing architecture.  The rest of  this paper is  or-
ganized  as  follows:  Section  2  and  Section  3  introduce  the
architecture  and  compilation  techniques  of  CGRAs,  Section  4
discusses  the  main  challenges  associated  with  CGRAs  and
possible  solutions,  Section  5  explores  the  future  applications
of CGRAs, and Section 6 concludes this paper.

2.  Architecture

As mentioned earlier, the implementation forms of recon-
figurable  computing  mainly  include  FPGAs  and  CGRAs.  Since
FPGAs  are  relatively  mature  and  their  architecture  is  well
known, this section focuses on the architecture of CGRAs.

2.1.  Architecture model

The basic architecture model of CGRAs is shown in Fig. 2.
It  consists  mainly  of  two  parts:  a  reconfigurable  controller
(RCC)  and  a  reconfigurable  datapath  (RCD).  Both  RCC  and
RCD  contain  memory  for  storing  configuration  and  data,  re-
spectively.  It  can be  seen that  this  architecture  is  a  variant  of
the  von  Neumann  computing  architecture.  The  main  differ-
ence  from  an  instruction  processor  is  that  RCC  controls  the
behavior  of  RCD  through  configuration  rather  than  instruc-
tions.  RCD  can  be  reconfigured  because  it  integrates  abund-
ant  basic  arithmetic  units  (such  as  adders,  multipliers,  etc.)
and  logical  units  (such  as  AND,  OR,  NAND,  XOR,  etc.),  and
RCC  can  select  and  organize  these  computing  units  to
achieve  specific  structures  and  functions  according  to  con-
figuration. The hardware structures of RCC and RCD are intro-
duced next.

2.2.  Reconfigurable controller

The hardware structure of RCC consists of three parts: con-
figuration management unit,  memory module and configura-
tion interface (as shown in Fig. 3). The configuration manage-
ment  unit  receives  configuration  context  from  the  outside
and parses it to get the internal control signals and configura-
tion  context.  The  internal  configuration  context  is  stored  in
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Fig. 1. Programmability comparisons among different chips.

2 Journal of Semiconductors      doi: 10.1088/1674-4926/41/2/021401

 

 
Y N Lu et al.: Architecture, challenges and applications of dynamic reconfigurable computing

 



the memory module and transferred to RCD by the configura-
tion  interface  as  needed.  The  configuration  interface  is  used
to send configuration context and control signals to RCD.

The RCC is responsible for the organization and manage-
ment  of  the  configuration  of  RCD.  Controllers  in  traditional
single-core  processors  focus  on  timing  scheduling  in  single
node.  Since  the  instruction  stream  is  repeatedly  executed  on
a  single  node,  many  parallelization  techniques  such  as  pipe-
lining are employed, thus the timing requirement of the con-
troller  is  high.  In  contrast,  reconfigurable  computing  pro-
cessors  are  mostly  implemented  in  the  form  of  arrays,  which
are  oriented  to  computing  resource  scheduling  of  multi-
nodes.  processing  elements  (PEs)  are  usually  not  as  complex
as a single-core processor, and the node control timing of the
controller  is  relatively  simple.  The  overall  efficiency  of  spatial
and  temporal  utilizations  is  more  important  than  node  sche-
duling,  which  presents  new  design  requirements  for  the
controller. In the case of a large amount of configuration, it is
conceivable  to  add  a  customized  accelerator  or  even  a  con-
trol unit array into RCC.

2.3.  Reconfigurable datapath

The  RCD  generally  includes  four  parts:  a  processing  ele-
ment array (PEA), a memory, a data interface, and a configura-
tion  interface  (as  shown  in Fig.  4).  The  configuration  inter-
face  obtains  control  signals  and  configuration  context  from
RCC,  while  it  sends  out  states.  The  configuration  interface
then  parses  the  configuration  context,  configures  the  func-
tion  of  the  PEA,  and  schedules  the  execution  order  of  tasks
on  PEA.  After  the  PEA  is  configured,  it  starts  to  execute  in  a
set  time,  driven by dataflow,  just  like an ASIC.  The input data

of  the PEA is  obtained from the data interface,  and the inter-
mediate  data  is  buffered  in  the  memory.  In  addition  to  com-
pleting  the  access  and  write  back  of  external  data,  the  data
interface  can  also  accept  signals  from  the  configuration  in-
terface  to  shape  and  transform  (such  as  transposition,  spli-
cing  operation,  etc.)  the  data  to  cooperate  with  the  execu-
tion of the PEA.

The basic  structure  of  the  PEA is  shown in Fig.  5.  A  large
number of PEs are combined together under a certain connec-
tion for parallel computing. A PE is generally composed of an
arithmetic logic unit (ALU) and a group of registers. For paral-
lel  computing,  the  main  bottleneck  limiting  the  performance
lies  in  the  external  memory  interface  when  computing  re-
sources are sufficient, which is referred to as throughput com-
puting. Therefore, the caching and prefetching of data is very
important,  which  can  effectively  reduce  the  dependence  on
external  memory.  In  a  PEA,  a  hierarchical  and  distributed
memory  structure  is  usually  employed.  Except  the  multi-lay-
er  design of  the memory module in Fig.  4,  a  large number of
distributed  memories—such  as  an  interface  buffer,  an  array-
level  cache,  an  internal  PE  memory—are  also  required  inside
the PEA.

The  PEA  can  be  classified  into  coarse-grained,  medium-
grained,  fine-grained,  mixed-grained  reconfigurable  arrays
according  to  the  granularity  of  the  PEs.  Higher  computation-
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al  efficiency  can  be  achieved  when  the  granularity  matches
the  data  width  of  the  applications.  For  example,  the  fine-
grained  PEA  is  suitable  for  bit  operations-based  applications;
the  coarse-grained  PEA  which  may  include  larger  functional
modules  such  as  addition  and  multiplication  units,  performs
better  for  graphic  and  image  processing,  as  well  as  digital
baseband operations.  The mixed-grained PEA combines  mul-
tiple  granularities  and  is  more  flexible,  making  it  suitable  for
various data widths.

2.4.  Configuration

The configuration of  a  dynamic  reconfigurable  processor
includes  operator  configuration,  interconnection  configura-
tion  and  data  transmission  configuration[38].  Operator  confi-
guration  is  used  to  configure  the  ALU  functions  in  PEs.  ALU
functions are configured as arithmetic logic operations or cus-
tomized operations related to application fields, which are sim-
ilar  to  the  arithmetic  logic  operation  instructions  in  instruc-
tion  set  architecture  (ISA).  However,  since  the  functions  and
structures  of  PEs  in  different  dynamic  reconfigurable  pro-
cessors  may  be  significantly  different,  there  is  no  uniform  in-
struction set and instruction format. The interconnection con-
figuration  is  used  to  configure  the  interconnection  structure
between  the  PEs  in  the  array  to  transmit  the  intermediate
data between the data registers in each PE. Therefore, the in-
terconnection  configuration  is  similar  to  the  MOV  instruction
in ISA for data transmission between registers. Data transmis-
sion  configuration  is  used  to  configure  data  transmission
between  the  PE  array  and  the  data  memory,  as  well  as  the
transmission  between  data  memories,  which  is  similar  to  the
MOV  instruction  for  data  transmission  between  registers  and
local  memory  and  the  MOVX  instruction  for  data  transmis-

sion between local memory and global memory in ISA.
The design of a configuration system for a dynamic recon-

figurable processor is similar to the design of ISA in GPPs. It in-
cludes the design of the organizational structure of configura-
tion  information,  the  configuration  storage  scheme,  and  the
configuration  management  scheme.  Consequently,  it  be-
longs to the category of architecture. In the design of organi-
zational  structure,  the  configuration  information  is  allocated
to  different  layers  but  organized  as  a  whole.  In  the  design  of
configuration  storage  scheme,  corresponding  storage  sche-
mes are designed for the layer configuration and the informa-
tion  in  each  layer.  The  configuration  information  is  stored  in
the  configuration  memory.  The  configuration  management
scheme  is  designed  based  on  the  previous  two  steps.  Unlike
the  static  organizational  structure,  configuration  manage-
ment  refers  to  the  dynamic  configuration  flow,  which  reads
out  the  various  kinds  of  configuration  information  from  con-
figuration  memory  and  writes  into  the  corresponding  hard-
ware modules to complete the configuration.

2.5.  Implementation instance: HReA

To  explain  the  architecture  of  a  dynamic  reconfigurable
processor  clearly,  this  section  will  introduce  an  implementa-
tion instance: HReA[39].  As shown in Fig. 6,  the HReA architec-
ture comprises three main functional parts: master micro-con-
troller,  PEA  micro-controller  and  PEAs.  Master  micro-control-
ler and PEA micro-controller comprise the RCC of HReA, while
PEAs  comprise  the  RCD.  There  is  also  direct  memory  access
controller (DMAC), embedded SRAM (ESRAM) and other com-
mon  peripherals,  such  as  interrupt  controller  (INTC),  timer,
UART,  and  system  controller  (SYSCTL).  On-chip  caching  (i.e,
128 kB configuration cache and 256 kB data cache) is used to
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Fig. 6. The architecture of HReA.
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reduce  the  required  off-chip  memory  bandwidth.  A  dedica-
ted  on-chip  memory  controller  (i.e,  DDR  CTL/PHY)  is  desig-
ned to connect off-chip DDR2 memory with on-chip caches.

Master  micro-controller  is  the  master-control  unit  and
started  up  under  the  control  of  SYSCTL.  It  is  responsible  for
configuring DMAC to transfer program package from DDR in-
to  the  ESRAM.  PEA  micro-controller  is  dedicated  to  control
the  configuration  and  data  for  PEAs.  It  assigns  tasks  for  PEAs
via  coprocessor  interface.  There  are  four  PEAs  (i.e,  PEA_0,
PEA_1,  PEA_2,  and  PEA_3)  and  they  are  the  key  components
to implement task acceleration. They can be dynamically com-
bined  according  to  the  requirements  of  calculation  so  as  to
achieve algorithm-level parallelism and can also be turned off
individually to save power. When completing tasks, PEAs noti-
fy PEA micro-controller via INTC.

The main functionality of  a PEA is  to fetch,  process,  store
and  export  data  driven  by  control  and  configuration  flows.
The  core  part  of  a  PEA  is  the  4  ×  4  hybrid-grained  PEs  which
are  organized  in  a  nearby  manner.  Based  on  configuration
context,  the  interconnections  between  PEs  can  be  dynamic-
ally reconfigured via configuring router connection. Each PEA
also  contains  auxiliary  components,  including  host  interface,
PEA  controller,  configuration  controller  and  data  controller,
to prepare control signal, configuration, and operand data for
the  PE  array.  The  host  interface  receives  coprocessor  instruc-
tions  from  PEA  micro-controller  and  reserves  data  ex-
changed  between  PEA  micro-controller  and  PE  array  in  glob-
al  register.  The PEA controller enables calculation on PE array
under the control of the host interface. The configuration con-
troller,  containing  a  context  memory  for  configuration  con-
texts,  is  responsible  for  scheduling  the  execution  sequence.
The  data  controller  provides  operand  data  to  the  PE  array,
with  a  shared  memory  for  buffering  input  data,  intermediate
results, and final outputs.

PEs  can be dynamically  configured to  execute  arithmetic
and  logic  operations  under  the  control  of  configuration  con-
text.  Each  PE  in  HReA  combines  a  32-bit  data  path  with  a  1-
bit  data  path  to  accommodate  multiple  computing  granu-
larities,  providing  up  to  15  different  operations—including
logical  operations,  such  as  AND,  OR,  XOR,  and  so  on—and
arithmetic  operations—such  as  adder,  subtracter,  multiplier,
leading-zero  detector,  shifter,  multiplexer,  absolute,  and  so
on.  Based  on  configuration  context  stored  in  the  context  re-
gister,  the  PE  controller  is  responsible  for  selecting  operand
data  (i.e,  ALU_input)  and  generating  operation  code  (i.e,
ALU_op)  for  the  ALU.  The  calculation  results  of  the  ALU  can
be kept in the inner register file for short-term storage or can
be  sent  to  shared  memory  via  load  store  unit  (LSU)  for  long-
term storage.

Based  on  the  hybrid-grained  PE  structure,  HReA  can  effi-
ciently  deal  with  both  computing-intensive  kernels  and  con-
trol-intensive  kernels  which  involve  various  branches,  loops,
and  sequential  codes.  Measured  results  on  kernels  from  the
13-Dwarfs[40] show  that  HReA  has  great  improvements  in  en-
ergy  efficiency  compared  with  instruction-driven  processors,
while maintaining high-enough functional flexibility.

3.  Compilation

Unlike  GPPs  and  FPGAs,  which  compute  temporally  and
spatially  respectively,  dynamic  reconfigurable  processors  are
both  temporal  and  spatial  computing  fabrics.  The  compila-

tion  of  a  dynamic  reconfigurable  processor  is  very  important
and  has  a  direct  impact  on  performance.  This  section  de-
scribes the compiler framework and presents the key compil-
ing techniques for dynamic reconfigurable processors.

3.1.  The compiler’s framework

To process the computing tasks of various applications, a
corresponding  target  program  must  be  generated  by  a  com-
piler for the component units (i.e, RCC and RCD) of the recon-
figurable processor. The compiler generates control codes for
RCC  and  configurations  for  RCD  via  the  processes  of  code
transformation,  task  partition,  task  scheduling,  mapping,  and
configuration generation.

Since  the  hardware  structure  of  a  reconfigurable  pro-
cessor  is  significantly  different  from  that  of  a  conventional
GPP,  the  compilation  flow  and  functions  of  a  reconfigurable
processor compiler are different from those of traditional com-
pilers  (such  as  GNU  gcc  compiler).  A  conventional  compiler
compiles  input  application  codes  to  generate  assembly  lan-
guage  codes  and  corresponding  machine  codes  for  a  target
processor. However, a reconfigurable processor compiler per-
forms  code  analysis  on  the  input  application,  divides  the  ap-
plication into software and hardware codes by using the soft-
ware  and hardware  co-design method,  and then respectively
compiles  the  two  kinds  of  codes  to  generate  control  codes
for RCC and configurations for RCD.

Fig. 7 shows an example of dividing and executing a ker-
nel  on  HReA.  The  two  loops  in  the  kernel  consume  most  of
the  execution  time  and  can  be  accelerated  on  PEAs,  while
the Pre-loop/Inter-loop/Post-loop codes are executed on PEA
micro-controller.  In  a  dynamic  reconfigurable  processor,  mul-
tiple  PEs  in  the  array  can  achieve  parallel  processing  or
pipelined sequential processing. For the first loop which is iter-
ation independent in Fig. 7, it can be fully unrolled. Thus, itera-
tion 0, 1, 2, 3 can be executed in parallel on different PEs. In a
spatial  mapping,  Stage  0-1,  Stage  1-1,  Stage  2-1,  Stage  3-1
are  mapped  onto  PE0,  PE1,  PE2,  PE3,  respectively,  and  Stage
0-2,  Stage  1-2,  Stage  2-2,  Stage  3-2  are  mapped  onto  PE4,
PE5,  PE6,  PE7,  respectively  (PE4,  PE5,  PE6,  PE7  are  on  the
second row in  PEA.).  However,  in  a  temporal  mapping,  Stage
0-2,  Stage  1-2,  Stage  2-2,  Stage  3-2  are  also  mapped  onto
PE0,  PE1,  PE2,  PE3  respectively.  The  second  loop  in Fig.  7 is
iteration dependent.  Assumed that  the initiation interval  is  1.
Stage  1-4  mapped  onto  PE1  should  be  executed  one  cycle
after Stage 0-4 mapped onto PE0.

The  compiler  framework  of  a  reconfigurable  processor  is
shown  in Fig.  8.  First,  the  compiler  needs  to  transform  and
optimize  the  code  of  an  application  to  get  the  data  flow
graph  (DFG).  The  DFG  is  then  mapped  to  the  reconfigurable
processor.  Owing  to  limited  hardware  resources,  the  DFG
usually  needs  to  be  partitioned  and  divided  into  a  series  of
interdependent  subgraphs.  These  subgraphs  will  be  sched-
uled  by  RCC  and  mapped  to  RCD  for  execution  after  task
mapping and configuration generation.

The  task  mapping  process  includes  register  allocation,
operator  mapping  and  memory  mapping.  In  a  reconfigur-
able  processor,  registers  and  internal  memory  are  designed
for data interaction and transfer between subtasks. Therefore,
necessary  register  and  memory  allocation  besides  operator
mapping is required in compilation. The last process is config-
uration  generation  and  optimization,  which  generates  con-
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trol  codes  and  configuration  information  for  RCC  and  RCD
respectively.  To  improve  the  overall  performance,  the  confi-
guration  information  needs  to  be  reasonably  optimized  by
eliminating redundant information and compression.

3.2.  Key techniques for compiling

There  are  several  key  techniques  in  the  compilation  of  a
dynamic  reconfigurable  processor,  such  as  code  transforma-
tion  and  optimization,  temporal  task  partition,  internal
memory  management,  and  configuration  optimization.  This
section discusses these techniques.

3.2.1.    Code transformation and optimization
For  most  reconfigurable  processors,  the  application’s

program  codes  are  written  in  a  high-level  programming  lan-
guage  (e.g,  C),  which  is  mostly  procedure  oriented  and  has
few parallelizable code segments. The parallelism in code seg-
ments  are  not  expressed  explicitly  in  the  program.  To  effect-
ively  improve  the  performance  of  an  application,  it  is  neces-
sary  to  fully  exploit  the  code  blocks  that  have  high  parallel-
ism  in  the  program[41].  Relevant  research  has  shown  that  the
kernel  loops  in  applications  take  up  most  of  the  execution
time[42].  Since  data  dependencies  may  exist  between  loop
iterations,  it  is  necessary  to  expand  the  loop  body  to  further
explore  the  potential  of  parallelism.  Some  code  transforma-
tion  and  optimization  techniques  have  been  proposed,  such
as  loop  unrolling,  scalar  substitution[43],  affine  transforma-
tion[44], and so on.

3.2.2.    Temporal task partition
Dynamic  reconfigurable  computing  architectures  sup-

port  changing  their  hardware  functions  by  dynamically  swit-
ching  the  configurations.  When  a  task  executed  on  the  re-
configurable  computing  processor  exceeds  the  hardware  re-
sources,  it  is  usually  divided  into  a  series  of  small  tasks  (sub-
tasks),  which are scheduled and sequentially executed on the
hardware through multiple  times of  configuration.  Therefore,
the  same  hardware  can  be  configured  multiple  times  and
perform repeated execution[45].

The temporal  task  partition technique divides  a  task  into
a series of  subtasks that are related to each other in the time
domain.  To  execute  tasks  beyond  the  computing  resources
on  the  limited  hardware,  large  tasks  are  divided  into  several
subtasks and time-multiplexing the hardware resources are ad-
opted. Fig.  9 shows an example of  temporal  task partition[46],
where a large task is divided into three subtasks whose compu-
tational  scale  satisfies  the  hardware  constraints.  These  three
subtasks  temporally  reuse  the  same  hardware  resource.  The
configurations  of  the  subtasks  are  sequentially  sent  to  the
computing  array  to  implement  the  respective  functions.  The
function of the large task is equivalently achieved.

3.2.3.    Internal memory management
When  multiple  subtasks  are  executed  on  the  same  re-
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configurable  hardware  in  time-multiplexing  manner,  there
are  possibly  data  dependencies  between  these  subtasks.
Therefore,  it  is  necessary  to  consider  data  interaction
between subtasks through internal  memory in the process of
mapping and configuration generation.

Figs.  10(a) and 10(b) show  the  two  main  problems  of  in-
ternal  data  interaction  that  need  to  be  addressed.  The  first
problem  comes  from  data  interaction  when  an  operator  has
multiple output targets,  as shown in Fig.  10(a).  A dynamic re-
configurable processor usually provides limited data manipula-
tions  due  to  hardware  complexity.  When  there  is  more  than
one  output  targets  (external  output  and  internal  data  trans-
fer  between  subtasks)  for  an  operator  in  a  subtask,  the  stor-
age  resources  need  to  be  effectively  managed  to  reduce  the
occupancy  rate  and  to  ensure  the  correctness.  Techniques
such  as  variable  life  cycle  analysis  and  operator  reordering
can  be  used  to  reduce  the  occupancy  rate  of  storage  re-
source and improve the computing performance. The second
problem  comes  from  the  data  interaction  between  subtasks.
When  a  subtask  requires  much  intermediate  data  as  input
and the storage locations of these data are scattered, it  is ne-
cessary  to  rearrange  these  data  for  block  operations.  The  re-
arrangement  can  extract  the  operation  data  required  by  the
current  subtask  and  improve  the  efficiency  of  memory  ac-
cess.  Techniques  such  as  subtask  correlation  analysis  and
data  splicing  can  be  used  to  improve  the  efficiency  of
memory access.

3.2.4.    Configuration optimization
As mentioned in the previous sections, the hardware func-

tion  of  a  dynamic  reconfigurable  processor  is  changed  by
dynamically  switching  the  configuration.  For  the  configura-
tions of multiple subtasks, eliminating the redundancy in con-
figurations  and  compressing  the  configuration  volume  will
greatly  shorten  the  configuration  loading  time.  The  reason
for the redundancy is  that the operator connection graphs in
different  subtasks  have  similar  structures.  Two  techniques

can  be  used  to  eliminate  the  redundancy  in  configurations.
First,  by  analyzing  the  statistical  correlation  in  the  bit  rate  of
redundant  information,  traditional  data  compression  meth-
ods  can  be  utilized  to  reduce  the  configuration  volume[47].
Second, direct analysis of the correlation of subtask DFGs can
reduce the generated configuration[48].

4.  Challenges

Although  there  have  been  many  successful  CGRA
designs,  which are  superior  in  terms of  energy efficiency and
flexibility,  CGRA  is  still  immature  and  far  away  from  large-
scale  commercial  utilization  because  there  are  still  some  key
technologies  and  bottlenecks  that  have  not  been  well  re-
solved.  Some  of  the  existing  technical  challenges  and  pro-
posed solutions follow.

4.1.  Cooperation of temporal and spatial mapping

Mapping  an  application  written  in  a  high-level  program-
ming language to a reconfigurable chip is  a  complex issue.  A
variety  of  techniques  can  be  used  together  in  the  mapping
process.  Ref.  [49]  proposed  an  aggressive  pipelining  method
for  irregular  applications  on  reconfigurable  hardware.  For
control  flows  in  irregular  applications  that  could  not  be  pre-
dict  by  static  analysis,  the  abundant  spatial  computing  re-
sources  are  used  at  runtime  to  aggressively  execute  tasks
concurrently.  Therefore,  fine-grained  parallelism  in  applica-
tions  can  be  efficiently  developed.  After  utilizing  a  combina-
tion  of  methods,  the  computing  performance  can  be  in-
creased by an order of magnitude. A polyhedral model that is
based  mapping  technology  can  also  be  adopted  for  perfor-
mance  optimization.  Taking  into  account  parameters  such  as
dynamic  reconfiguration,  array  calculation  and  cache  access,
and  using  a  joint  optimization  method  of  affine  transforma-
tion  and  loop  tiling  to  establish  a  performance  model  and  a
power  consumption  model,  the  execution  time  of  a  task  can
be reduced by about 20%[50].

4.2.  Control-intensive task parallelization

Reconfigurable  computing  architectures  are  effective  for
compute-intensive  tasks,  but  how  to  perform  control-intens-
ive tasks is a difficult problem. Exploring the parallelization of
control-intensive  tasks  on  a  centralized-controlled  comput-
ing array  is  necessary.  By  giving a  common mapping process
and utilizing techniques such as merging branches and condi-
tion  computation,  configuration  fusion,  and  configuration
branch optimization, the configuration and execution time of
control  tasks  can  be  reduced  and  the  performance  is  im-
proved  by  approximately  40%[51].  For  the  distributed-con-
trolled systems,  the parallelization methods of  the control-in-
tensive  tasks  on  a  distributed-controlled  computing  array  is
adopted.  Ref.  [52]  proposed  a  PE  that  supports  triggered
configuration.  The  PE  employs  a  structure  that  combines
trigger  mechanism  and  composite  configuration.  Thus,  the
instruction-level  parallelism  of  complex  control  flows  is  effi-
ciently  achieved,  reducing  the  latency  and  execution  cost
caused  by  control  flow.  Finally,  the  performance  of  pro-
cessing control-intensive tasks is improved by 20% to 140%.

4.3.  Optimization of configuration organization

Reconfigurable  hardware  needs  continuous  configura-
tion  to  change  the  structure  and  function.  It  is  important  to
consider  the  size  of  the  configuration.  Generally,  the  amount
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of  a  FPGA  configuration  is  about  a  dozen  megabytes  or  tens
of  megabytes,  and  the  configuration  time  is  several  hundred
milliseconds to a few seconds, which is too long for a dynam-
ic  reconfigurable CGRA.  To achieve reconfiguration in  a  short
time,  the first  thing is  to  reduce the amount  of  configuration
information.  Through  analysis  of  the  computational  flow
graph, Ref. [53] proposed a hierarchical configuration genera-
tion  technology  based  on  isomorphic  similarity  matching  of
subgraphs.  The  commonality  of  the  DFG  is  extracted  accord-
ing  to  the  similarity  matching  and  cross  index  between  sub-
graphs. The total amount of configuration information can be
reduced by more than 70% and an optimized hierarchical  or-
ganization of configuration is formed.

4.4.  Dynamically loading configuration

Although  the  amount  of  configuration  is  reduced,  it  still
takes  time  to  load  the  configuration  onto  the  datapath.  It  is
found  that  it  is  unnecessary  to  send  configuration  all  the
time,  and  some  configuration  may  be  resident  in  the
memory.  Ref.  [54]  proposed  a  correlation-aware  caching
strategy  for  configuration  flow.  An  on-chip  cache  structure
and  the  prefetching  method  have  been  designed  for  group-
ing  the  configuration  according  to  the  computing  tasks.  Re-
dundant  transmission  of  configuration  flow  in  each  layer  is
eliminated.  The  configuration  sets  are  converged  down-
wards by layer. The gap of configuration flow is optimized by
using  pipeline  equalization.  Consequently,  the  configuration
amount  is  reduced  and  the  configuration  speed  is  increased,
which results in a decrease in the configuration time.

These  technologies  relieve  the  problems of  optimal  gen-
eration,  storage  and  loading  of  configuration  information  in
dynamic  reconfigurable  chips.  Through  the  maximum  paral-
lelization  of  configuration  and  execution,  nanosecond-level
function  reconfiguration  is  realized,  providing  the  founda-
tion of both energy efficiency and flexibility for dynamic recon-
figurable chips.

5.  Applications

From  the  current  successful  application  of  CGRAs,  it  can
be  seen  that  they  are  more  suitable  for  compute-intensive
and  data-intensive  applications.  The  following  classifications
describe the current main applications of CGRAs.

5.1.  Neural network

Since  2010,  advances  in  neural  networking  technology
have  driven  the  development  of  artificial  intelligence.  Deep
neural  network  (DNN),  which  is  a  basic  supporting  techno-
logy,  requires  complex  calculations  of  large  amounts  of  data
with  frequent  inter-layer  communication.  Research  shows
that  CGRA  is  a  superior  implementation  of  DNN  because  of
its  high  throughput  computing  and  on-chip  communication
capabilities.  For  example,  Eyeriss[55] is  based  on  the  CGRA
structure  to  minimize  the  energy  consumption  of  data  mo-
vement  by  maximizing  reuse  of  input  data.  Ref.  [56]  pro-
posed  a  runtime  reconfigurable  two-dimensional  dataflow
computing  engine,  which  can  implement  a  variety  of  convo-
lutional NN operations in a systolic manner.

Thinker[57] is  a  reconfigurable hybrid-neural  network pro-
cessor,  which was proposed by our  research team.  Its  energy
efficiency could be as  high as  5.09-TOPS/W in 65 nm techno-
logy.  It  has  two 16 × 16 reconfigurable  heterogeneous PE ar-

rays.  To  accelerate  hybrid-NNs,  the  PE  arrays  are  designed  to
support  on demand partitioning and reconfiguration for  pro-
cessing  different  NNs  in  parallel.  Each  PE  in  the  array  sup-
ports  bit-width  adaption  to  meet  variant  bit-width  of  neural
layers.  Furthermore,  a  fused  data  pattern-based  multi-bank
memory system is designed to exploit data reuse and guaran-
tee  parallel  data  access.  These  design  techniques  improve
the  PE  utilization  and  computing  throughput,  as  well  as  en-
ergy efficiency.

5.2.  Cryptography

Cryptographic  processing  is  also  a  computing-intensive
application,  which  is  especially  suited  for  CGRA-based  imple-
mentations.  Scholars  have  proposed  many  reconfigurable
cryptographic  processors  based  on  CGRA  structure.  For  ex-
ample,  Celator[58] is  a  reconfigurable  coprocessor  that  imple-
ments block ciphers (AES and DES) and HASH function (SHA).
Cryptoraptor[59] is  a  reconfigurable  cryptographic  processor
that  implements  multiple  symmetric  cryptographic  algori-
thms with a peak throughput of  up to 128 Gbps for AES-128.
In  addition  to  implementing  encryption  and  decryption  ope-
rations,  CGRA  also  has  some  resistance  to  physical  attacks.
CGRA  uses  its  hardware  resource  redundancy  and  dynamic
real-time  reconfigurable  features  to  achieve  randomization
of  cryptographic  operations  in  space and time,  which greatly
increases  the  difficulty  for  attackers  who  wish  to  perform
physical  attacks,  such  as  electromagnetic  attacks  and  fault
attacks.  This is especially important for the security of crypto-
graphic  algorithms,  and  it  also  reflects  the  superiority  of
CGRA software-defined hardware.

5.3.  Multimedia

Multimedia  (e.g,  voice,  image and video)  usually  need to
code  or  decode  abundant  data.  They  are  typical  stream  pro-
cessing applications that deal with different data in the same
way.  These  applications  contain  plenty  of  parallel  calcula-
tions  on  macro  blocks.  CGRA  performs  well  in  stream  pro-
cessing  because  of  its  "switching  configurations  to  adapt  the
application"  and  "one-time  configuration,  multi-time  execu-
tion"  features.  There  are  a  large  number  of  CGRA  structures
for  this  type  of  application.  For  example,  the  classic  ADRES
has  been  applied  to  video  processing  (H.264/AVC  decod-
ing[60]),  image  processing[61].  XPP-III  and  REMUS  are  also  ap-
plied  to  video  processing  (MPEG4  and  H.264/AVC  decod-
ing[62]).  Samsung  applied  a  CGRA  video  processing  platform
for 8K Ultra HD TV[63].

5.4.  Signal processing

CGRAs  can  also  be  used  in  the  field  of  signal  processing
where  the  most  important  algorithms  are  fast  Fourier  trans-
form (FFT) and inverse FFT. For instance, ADRES has been ap-
plied to software-defined radio (SDR) signal processing (SDM-
OFDM)  receivers[64] and  MIMO  SDM-OFDM  baseband  pro-
cessing[65].  FLEXDET,  proposed  in  Ref.  [66],  is  a  multi-mode
MIMO  detector  based  on  reconfigurable  processing.  It  is
reported  that  CGRAs  can  get  a  higher  throughput  than  con-
ventional  digital  signal  processors  (DSPs)  because  of  more
powerful  computing  resources  and  larger  bandwidth  inter-
face.

6.  Conclusion

CGRA is the main form of dynamic reconfigurable comput-
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ing fabric.  This  paper surveys the important aspects of  CGRA,
including the concept, architecture, compilation, existing chal-
lenges,  and  prospective  applications.  However,  CGRA  is  not
as  mature  as  FPGA  and  still  has  some  challenges  to  over-
come.  Since  CGRA  is  superior  in  energy  efficiency,  area  effi-
ciency and flexibility, and does well in several important app-
lication  domains,  it  is  predicted  that  CGRA  will  become  an
alternative to some existing computing architectures.
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