

Architecture, challenges and applications of dynamic
reconfigurable computing

Yanan Lu, Leibo Liu†, Jianfeng Zhu, Shouyi Yin, and Shaojun Wei

Institute of Microelectronics, Tsinghua University, Beijing 100084, China

Abstract: As a computing paradigm that combines temporal and spatial computations, dynamic reconfigurable computing
provides superiorities of flexibility, energy efficiency and area efficiency, attracting interest from both academia and industry.
However, dynamic reconfigurable computing is not yet mature because of several unsolved problems. This work introduces
the concept, architecture, and compilation techniques of dynamic reconfigurable computing. It also discusses the existing ma-
jor challenges and points out its potential applications.

Key words: reconfigurable computing; architecture; challenge; application

Citation: Y N Lu, L B Liu, J F Zhu, S Y Yin, and S J Wei, Architecture, challenges and applications of dynamic reconfigurable
computing[J]. J. Semicond., 2020, 41(2), 021401. http://doi.org/10.1088/1674-4926/41/2/021401

1. Introduction

Reconfigurable computing has drawn wide attention in
both academia and industry in the past decade, and respect-
ive commercial products are quickly emerging[1−10]. The pop-
ularity of reconfigurable computing is mainly due to the fol-
lowing reasons. First, energy efficiency has become a more
important criterion than performance. Therefore, computing
infrastructures need to reduce power consumption while pur-
suing high performance and reconfigurable computing archi-
tectures provide higher energy efficiency compared to gener-
al-purpose processors[11]. Second, it is essential for comput-
ing architectures to keep high flexibility while improving per-
formance[12, 13]. ASIC designs can achieve optimal perform-
ance, and thus custom function modules are increasingly integ-
rated into a system on chip (SoC) to form a heterogeneous
computing architecture. However, due to the weak flexibility
of ASIC designs, resources cannot be reused and they can
only perform a specific task. These modules probably cannot
run at the same time, leading to low resource utilization and
low area efficiency from the view of the SoC. Meanwhile, recon-
figurable architectures take advantage of both spatial do-
main and time domain computing, which improves area effi-
ciency while achieving comparable performance with ASIC
designs. Finally, economy is another important factor. As
CMOS technology progresses to below 22 nm, the non-recur-
ring engineering cost of chip production becomes ever more
expensive and small-quantity dedicated circuits are difficult
to recover the cost. Therefore, it is essential to replace these
dedicated designs with programmable general-purpose pro-
cessing architectures[14, 15]. Fig. 1 compares different chips in
terms of software and hardware programmability. A dynamic
reconfigurable computing chip is a promising alternative due
to its strong software and hardware programmability.

Reconfigurable computing is not a new concept. As early

as the 1960s, Prof. Gerald Estrin of UCLA proposed that com-
puters can be composed of a main processor and an array of
reconfigurable hardware[16]. The main processor is respons-
ible for controlling the behavior of the reconfigurable hard-
ware. The latter accelerates the execution of specific tasks by
tailoring and reconfiguration according to the computing
characteristics of the target applications[17, 18]. However, this
innovative concept was limited by the semiconductor techno-
logy at that time and did not receive much attention. In the
next few decades, the computing architectures evolved in
two primary groups, ASICs and general-purpose processors
(GPPs). The advantages and disadvantages of these two
groups are prominent. The reconfigurable architectures take
advantage of both ASICs and GPPs, and deliver a reasonable
tradeoff between performance, power, and flexibility. In the
1990s, reconfigurable computing gradually attracted more
interest and was widely studied by researchers. In 1999, the
Reconfigurable Technology Research Center of the Uni-
versity of California, Berkeley, proposed a more general defini-
tion of reconfigurable architectures, as follows: 1) the functi-
onal units on the chips should have post-fabrication program-
mability (i.e, the function of the hardware units can be recon-
figured after silicon implementation); and 2) it should be able
to achieve the spatial mapping of algorithms to computati-
onal engines. Computing methods with these two characteri-
stics can be classified as reconfigurable computing[19]. This
definition highlights two major features that distinguish re-
configurable architectures from other computing architec-
tures.

From the perspective of implementation, reconfigurable
architectures mainly include FPGAs and coarse-grained recon-
figurable arrays (CGRAs). FPGA is an early form of reconfigur-
able computing whose development continues today. Xilinx
developed the world’s first FPGA in 1986[20], and has since
continuously improved the structure, technology, and scale
of the chip. FPGAs were primarily utilized for functional veri-
fication of a system design or as an alternative for ASICs to
implement some functions in a system. Thanks to the increas-

Correspondence to: L B Liu, liulb@tsinghua.edu.cn
Received 17 SEPTEMBER 2019; Revised 14 OCTOBER 2019.

©2020 Chinese Institute of Electronics

REVIEWS

Journal of Semiconductors
(2020) 41, 021401

doi: 10.1088/1674-4926/41/2/021401

http://dx.doi.org/10.1088/1674-4926/41/2/021401

ingly abundant resources on a chip and the fast develop-
ment of CAD tools based on high-level programming lan-
guage, FPGAs are now widely employed as accelerators in
the mainstream computing infrastructures. For instance, In-
tel acquired Altera and integrated FPGA using a Xeon CPU as
an accelerator[21]; IBM released SuperVessel cloud server
based on GPU and FPGA[22]; Microsoft launched a FPGA-
based could server Azure[23]. However, due to the fine-
grained logic cell and static reconstruction, FPGAs have the
drawbacks of low area efficiency, high power consumption,
large configuration bit-stream and long reconfiguration time.
To mitigate these inefficiencies, recent FPGAs have integ-
rated various hard IPs and employed techniques such as
block-based partial reconfiguration[24]. Some researchers
even proposed to implement virtual CGRAs in FPGAs[25]. In
contrast, CGRAs provide coarse-grained computational granu-
larity and structure that better match the need of applica-
tions. Compared with FPGAs, CGRAs have great advantages
in area efficiency, power efficiency and reconfiguration time.
For example, the typical reconfiguration time of FPGAs
ranges from several hundred milliseconds to several seconds,
while for CGRAs, reconfiguration only takes a few nano-
seconds to several hundred nanoseconds. Consequently,
CGRAs are also called dynamic reconfigurable architectures.
Since the 1990s, a number of influential CGRAs—such as
Morphosys[26], ADRES[27], PACT XPP[28], and REMUS[29]—have
been developed, targeting the applications of signal pro-
cessing, multimedia, and so on. In recent years, researchers
have continued to study the design of CGRAs and have pro-
posed many latest implementations, such as Plasticine[1],
CGRA-ME[30], PX-CGRA[31], i-DPs CGRA[32], dMT-CGRA[33]. How-
ever, CGRAs are not yet widely used in industry due to their
inconsistent structures, and immature programming and
compilation tools, which will be explained in detail later on.

There are many previous surveys on reconfigurable com-
puting[12, 13, 34−37]. However, most of them focused on FPGA
technology, with little to do with CGRAs. Given that FPGAs
are relatively mature, while CGRAs still have many unsolved

problems and are far from large-scale commercial utilization,
this paper focus on CGRAs, which employ a dynamically recon-
figurable computing architecture. The rest of this paper is or-
ganized as follows: Section 2 and Section 3 introduce the
architecture and compilation techniques of CGRAs, Section 4
discusses the main challenges associated with CGRAs and
possible solutions, Section 5 explores the future applications
of CGRAs, and Section 6 concludes this paper.

2. Architecture

As mentioned earlier, the implementation forms of recon-
figurable computing mainly include FPGAs and CGRAs. Since
FPGAs are relatively mature and their architecture is well
known, this section focuses on the architecture of CGRAs.

2.1. Architecture model

The basic architecture model of CGRAs is shown in Fig. 2.
It consists mainly of two parts: a reconfigurable controller
(RCC) and a reconfigurable datapath (RCD). Both RCC and
RCD contain memory for storing configuration and data, re-
spectively. It can be seen that this architecture is a variant of
the von Neumann computing architecture. The main differ-
ence from an instruction processor is that RCC controls the
behavior of RCD through configuration rather than instruc-
tions. RCD can be reconfigured because it integrates abund-
ant basic arithmetic units (such as adders, multipliers, etc.)
and logical units (such as AND, OR, NAND, XOR, etc.), and
RCC can select and organize these computing units to
achieve specific structures and functions according to con-
figuration. The hardware structures of RCC and RCD are intro-
duced next.

2.2. Reconfigurable controller

The hardware structure of RCC consists of three parts: con-
figuration management unit, memory module and configura-
tion interface (as shown in Fig. 3). The configuration manage-
ment unit receives configuration context from the outside
and parses it to get the internal control signals and configura-
tion context. The internal configuration context is stored in

Strong hardware

programmability

Weak hardware

programmability

Weak software

programmability

Strong software

programmability

● CPU, DSP, etc.

● Software programmable

● Coarse-grained, 8−64 bits

● Software is needed when running

● Chip design knowledge is unnecessary

● Low energy and computing efficiencies

● ...

Processors

● RCP, CGRA, etc.

● Software & hardware programmable

● Mixed-grained

● Function varies according to software

● Chip design knowledge is unnecessary

● High energy and computing efficiencies

● ...

● ASIC, SoC, etc.

● Various kinds, small quantity

● Hardware is unchangeable after fabrication

● Software usually unnecessary when running

● Chip design knowledge is necessary

● High energy and computing efficiencies

● ...

● FPGA, EPLD, etc.

● Static hardware programmability

● Fine-grained, 1 bit

● Do not need software when running

● Chip design knowledge is necessary

● Middle energy and computing efficiencies

● ...

Dynamic reconfigurable chips

Programmable logic devicesASICs

Fig. 1. Programmability comparisons among different chips.

2 Journal of Semiconductors doi: 10.1088/1674-4926/41/2/021401

Y N Lu et al.: Architecture, challenges and applications of dynamic reconfigurable computing

the memory module and transferred to RCD by the configura-
tion interface as needed. The configuration interface is used
to send configuration context and control signals to RCD.

The RCC is responsible for the organization and manage-
ment of the configuration of RCD. Controllers in traditional
single-core processors focus on timing scheduling in single
node. Since the instruction stream is repeatedly executed on
a single node, many parallelization techniques such as pipe-
lining are employed, thus the timing requirement of the con-
troller is high. In contrast, reconfigurable computing pro-
cessors are mostly implemented in the form of arrays, which
are oriented to computing resource scheduling of multi-
nodes. processing elements (PEs) are usually not as complex
as a single-core processor, and the node control timing of the
controller is relatively simple. The overall efficiency of spatial
and temporal utilizations is more important than node sche-
duling, which presents new design requirements for the
controller. In the case of a large amount of configuration, it is
conceivable to add a customized accelerator or even a con-
trol unit array into RCC.

2.3. Reconfigurable datapath

The RCD generally includes four parts: a processing ele-
ment array (PEA), a memory, a data interface, and a configura-
tion interface (as shown in Fig. 4). The configuration inter-
face obtains control signals and configuration context from
RCC, while it sends out states. The configuration interface
then parses the configuration context, configures the func-
tion of the PEA, and schedules the execution order of tasks
on PEA. After the PEA is configured, it starts to execute in a
set time, driven by dataflow, just like an ASIC. The input data

of the PEA is obtained from the data interface, and the inter-
mediate data is buffered in the memory. In addition to com-
pleting the access and write back of external data, the data
interface can also accept signals from the configuration in-
terface to shape and transform (such as transposition, spli-
cing operation, etc.) the data to cooperate with the execu-
tion of the PEA.

The basic structure of the PEA is shown in Fig. 5. A large
number of PEs are combined together under a certain connec-
tion for parallel computing. A PE is generally composed of an
arithmetic logic unit (ALU) and a group of registers. For paral-
lel computing, the main bottleneck limiting the performance
lies in the external memory interface when computing re-
sources are sufficient, which is referred to as throughput com-
puting. Therefore, the caching and prefetching of data is very
important, which can effectively reduce the dependence on
external memory. In a PEA, a hierarchical and distributed
memory structure is usually employed. Except the multi-lay-
er design of the memory module in Fig. 4, a large number of
distributed memories—such as an interface buffer, an array-
level cache, an internal PE memory—are also required inside
the PEA.

The PEA can be classified into coarse-grained, medium-
grained, fine-grained, mixed-grained reconfigurable arrays
according to the granularity of the PEs. Higher computation-

Reconfigurable computing

architecture model

Reconfigurable

datapath (RCD)

Memory
OutputInput

Reconfigurable

controller (RCC)

Memory

Configuration

contextClock

Control StateContext

Fig. 2. An architecture model of reconfigurable computing.

State

Context
Memory

Configuration

management & control

Reconfigurable controller (RCC)

Config.

interface

Configuration context

Internal

context

Context

Control

Fig. 3. The structure of RCC.

Processing

element

array (PEA)

Memory

Data

interface

Config.

interface &

state reg.

Reconfigurable datapath (RCD)

Input data

Output dataState

Context

Control

Fig. 4. The structure of RCD.

PE PE PE PE …

Processing element array (PEA)

PE PE PE PE …

PE PE PE PE …

PE PE PE PE …

…

… … …

Caches

Interconnection

IO FIFOs

Context

State

ALU
RF

Config

Config

Reg.

Input

Output

Processing element (PE)

Fig. 5. The structures of PEA and a PE.

Journal of Semiconductors doi: 10.1088/1674-4926/41/2/021401 3

Y N Lu et al.: Architecture, challenges and applications of dynamic reconfigurable computing

al efficiency can be achieved when the granularity matches
the data width of the applications. For example, the fine-
grained PEA is suitable for bit operations-based applications;
the coarse-grained PEA which may include larger functional
modules such as addition and multiplication units, performs
better for graphic and image processing, as well as digital
baseband operations. The mixed-grained PEA combines mul-
tiple granularities and is more flexible, making it suitable for
various data widths.

2.4. Configuration

The configuration of a dynamic reconfigurable processor
includes operator configuration, interconnection configura-
tion and data transmission configuration[38]. Operator confi-
guration is used to configure the ALU functions in PEs. ALU
functions are configured as arithmetic logic operations or cus-
tomized operations related to application fields, which are sim-
ilar to the arithmetic logic operation instructions in instruc-
tion set architecture (ISA). However, since the functions and
structures of PEs in different dynamic reconfigurable pro-
cessors may be significantly different, there is no uniform in-
struction set and instruction format. The interconnection con-
figuration is used to configure the interconnection structure
between the PEs in the array to transmit the intermediate
data between the data registers in each PE. Therefore, the in-
terconnection configuration is similar to the MOV instruction
in ISA for data transmission between registers. Data transmis-
sion configuration is used to configure data transmission
between the PE array and the data memory, as well as the
transmission between data memories, which is similar to the
MOV instruction for data transmission between registers and
local memory and the MOVX instruction for data transmis-

sion between local memory and global memory in ISA.
The design of a configuration system for a dynamic recon-

figurable processor is similar to the design of ISA in GPPs. It in-
cludes the design of the organizational structure of configura-
tion information, the configuration storage scheme, and the
configuration management scheme. Consequently, it be-
longs to the category of architecture. In the design of organi-
zational structure, the configuration information is allocated
to different layers but organized as a whole. In the design of
configuration storage scheme, corresponding storage sche-
mes are designed for the layer configuration and the informa-
tion in each layer. The configuration information is stored in
the configuration memory. The configuration management
scheme is designed based on the previous two steps. Unlike
the static organizational structure, configuration manage-
ment refers to the dynamic configuration flow, which reads
out the various kinds of configuration information from con-
figuration memory and writes into the corresponding hard-
ware modules to complete the configuration.

2.5. Implementation instance: HReA

To explain the architecture of a dynamic reconfigurable
processor clearly, this section will introduce an implementa-
tion instance: HReA[39]. As shown in Fig. 6, the HReA architec-
ture comprises three main functional parts: master micro-con-
troller, PEA micro-controller and PEAs. Master micro-control-
ler and PEA micro-controller comprise the RCC of HReA, while
PEAs comprise the RCD. There is also direct memory access
controller (DMAC), embedded SRAM (ESRAM) and other com-
mon peripherals, such as interrupt controller (INTC), timer,
UART, and system controller (SYSCTL). On-chip caching (i.e,
128 kB configuration cache and 256 kB data cache) is used to

Reg file
Context

reg

Load store

unit

PE controller

Router

PEA controller

Host interface

Configuration

controller

Data controller

Shared memory

Context memory

Global register

PEA_0

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PEA_1

PEA_2

PEA_3

Master micro

controller

AHB_BUS_MATRIX

ESRAM DMAC

AHB2APB AHB2AHB

INTC

timer

UART

SYSCTL

AHB_BUS_MATRIX

PEA micro

controller

Config. cacheData cache

Coprocessor

interface

DDR CTL/PHY

To off-chip DDR2 memory

EN

State

EN

State

EN State

ADDR

DATA

ADDR

DATA

ADDR

DATA

EN ADDR LEN

ALU

… … …

32b 32b 1b

MUXMUXMUX

31b Reg 1b Reg

1b

i4

i1 i2 i3

O1 O232b 1b

ADDR
ADDR

DATA

DATA

ADDR

DATA

ADDR DATA

ADDR DATA ADDR DATA

PE

To other PEs

EN

State

Fig. 6. The architecture of HReA.

4 Journal of Semiconductors doi: 10.1088/1674-4926/41/2/021401

Y N Lu et al.: Architecture, challenges and applications of dynamic reconfigurable computing

reduce the required off-chip memory bandwidth. A dedica-
ted on-chip memory controller (i.e, DDR CTL/PHY) is desig-
ned to connect off-chip DDR2 memory with on-chip caches.

Master micro-controller is the master-control unit and
started up under the control of SYSCTL. It is responsible for
configuring DMAC to transfer program package from DDR in-
to the ESRAM. PEA micro-controller is dedicated to control
the configuration and data for PEAs. It assigns tasks for PEAs
via coprocessor interface. There are four PEAs (i.e, PEA_0,
PEA_1, PEA_2, and PEA_3) and they are the key components
to implement task acceleration. They can be dynamically com-
bined according to the requirements of calculation so as to
achieve algorithm-level parallelism and can also be turned off
individually to save power. When completing tasks, PEAs noti-
fy PEA micro-controller via INTC.

The main functionality of a PEA is to fetch, process, store
and export data driven by control and configuration flows.
The core part of a PEA is the 4 × 4 hybrid-grained PEs which
are organized in a nearby manner. Based on configuration
context, the interconnections between PEs can be dynamic-
ally reconfigured via configuring router connection. Each PEA
also contains auxiliary components, including host interface,
PEA controller, configuration controller and data controller,
to prepare control signal, configuration, and operand data for
the PE array. The host interface receives coprocessor instruc-
tions from PEA micro-controller and reserves data ex-
changed between PEA micro-controller and PE array in glob-
al register. The PEA controller enables calculation on PE array
under the control of the host interface. The configuration con-
troller, containing a context memory for configuration con-
texts, is responsible for scheduling the execution sequence.
The data controller provides operand data to the PE array,
with a shared memory for buffering input data, intermediate
results, and final outputs.

PEs can be dynamically configured to execute arithmetic
and logic operations under the control of configuration con-
text. Each PE in HReA combines a 32-bit data path with a 1-
bit data path to accommodate multiple computing granu-
larities, providing up to 15 different operations—including
logical operations, such as AND, OR, XOR, and so on—and
arithmetic operations—such as adder, subtracter, multiplier,
leading-zero detector, shifter, multiplexer, absolute, and so
on. Based on configuration context stored in the context re-
gister, the PE controller is responsible for selecting operand
data (i.e, ALU_input) and generating operation code (i.e,
ALU_op) for the ALU. The calculation results of the ALU can
be kept in the inner register file for short-term storage or can
be sent to shared memory via load store unit (LSU) for long-
term storage.

Based on the hybrid-grained PE structure, HReA can effi-
ciently deal with both computing-intensive kernels and con-
trol-intensive kernels which involve various branches, loops,
and sequential codes. Measured results on kernels from the
13-Dwarfs[40] show that HReA has great improvements in en-
ergy efficiency compared with instruction-driven processors,
while maintaining high-enough functional flexibility.

3. Compilation

Unlike GPPs and FPGAs, which compute temporally and
spatially respectively, dynamic reconfigurable processors are
both temporal and spatial computing fabrics. The compila-

tion of a dynamic reconfigurable processor is very important
and has a direct impact on performance. This section de-
scribes the compiler framework and presents the key compil-
ing techniques for dynamic reconfigurable processors.

3.1. The compiler’s framework

To process the computing tasks of various applications, a
corresponding target program must be generated by a com-
piler for the component units (i.e, RCC and RCD) of the recon-
figurable processor. The compiler generates control codes for
RCC and configurations for RCD via the processes of code
transformation, task partition, task scheduling, mapping, and
configuration generation.

Since the hardware structure of a reconfigurable pro-
cessor is significantly different from that of a conventional
GPP, the compilation flow and functions of a reconfigurable
processor compiler are different from those of traditional com-
pilers (such as GNU gcc compiler). A conventional compiler
compiles input application codes to generate assembly lan-
guage codes and corresponding machine codes for a target
processor. However, a reconfigurable processor compiler per-
forms code analysis on the input application, divides the ap-
plication into software and hardware codes by using the soft-
ware and hardware co-design method, and then respectively
compiles the two kinds of codes to generate control codes
for RCC and configurations for RCD.

Fig. 7 shows an example of dividing and executing a ker-
nel on HReA. The two loops in the kernel consume most of
the execution time and can be accelerated on PEAs, while
the Pre-loop/Inter-loop/Post-loop codes are executed on PEA
micro-controller. In a dynamic reconfigurable processor, mul-
tiple PEs in the array can achieve parallel processing or
pipelined sequential processing. For the first loop which is iter-
ation independent in Fig. 7, it can be fully unrolled. Thus, itera-
tion 0, 1, 2, 3 can be executed in parallel on different PEs. In a
spatial mapping, Stage 0-1, Stage 1-1, Stage 2-1, Stage 3-1
are mapped onto PE0, PE1, PE2, PE3, respectively, and Stage
0-2, Stage 1-2, Stage 2-2, Stage 3-2 are mapped onto PE4,
PE5, PE6, PE7, respectively (PE4, PE5, PE6, PE7 are on the
second row in PEA.). However, in a temporal mapping, Stage
0-2, Stage 1-2, Stage 2-2, Stage 3-2 are also mapped onto
PE0, PE1, PE2, PE3 respectively. The second loop in Fig. 7 is
iteration dependent. Assumed that the initiation interval is 1.
Stage 1-4 mapped onto PE1 should be executed one cycle
after Stage 0-4 mapped onto PE0.

The compiler framework of a reconfigurable processor is
shown in Fig. 8. First, the compiler needs to transform and
optimize the code of an application to get the data flow
graph (DFG). The DFG is then mapped to the reconfigurable
processor. Owing to limited hardware resources, the DFG
usually needs to be partitioned and divided into a series of
interdependent subgraphs. These subgraphs will be sched-
uled by RCC and mapped to RCD for execution after task
mapping and configuration generation.

The task mapping process includes register allocation,
operator mapping and memory mapping. In a reconfigur-
able processor, registers and internal memory are designed
for data interaction and transfer between subtasks. Therefore,
necessary register and memory allocation besides operator
mapping is required in compilation. The last process is config-
uration generation and optimization, which generates con-

Journal of Semiconductors doi: 10.1088/1674-4926/41/2/021401 5

Y N Lu et al.: Architecture, challenges and applications of dynamic reconfigurable computing

trol codes and configuration information for RCC and RCD
respectively. To improve the overall performance, the confi-
guration information needs to be reasonably optimized by
eliminating redundant information and compression.

3.2. Key techniques for compiling

There are several key techniques in the compilation of a
dynamic reconfigurable processor, such as code transforma-
tion and optimization, temporal task partition, internal
memory management, and configuration optimization. This
section discusses these techniques.

3.2.1. Code transformation and optimization
For most reconfigurable processors, the application’s

program codes are written in a high-level programming lan-
guage (e.g, C), which is mostly procedure oriented and has
few parallelizable code segments. The parallelism in code seg-
ments are not expressed explicitly in the program. To effect-
ively improve the performance of an application, it is neces-
sary to fully exploit the code blocks that have high parallel-
ism in the program[41]. Relevant research has shown that the
kernel loops in applications take up most of the execution
time[42]. Since data dependencies may exist between loop
iterations, it is necessary to expand the loop body to further
explore the potential of parallelism. Some code transforma-
tion and optimization techniques have been proposed, such
as loop unrolling, scalar substitution[43], affine transforma-
tion[44], and so on.

3.2.2. Temporal task partition
Dynamic reconfigurable computing architectures sup-

port changing their hardware functions by dynamically swit-
ching the configurations. When a task executed on the re-
configurable computing processor exceeds the hardware re-
sources, it is usually divided into a series of small tasks (sub-
tasks), which are scheduled and sequentially executed on the
hardware through multiple times of configuration. Therefore,
the same hardware can be configured multiple times and
perform repeated execution[45].

The temporal task partition technique divides a task into
a series of subtasks that are related to each other in the time
domain. To execute tasks beyond the computing resources
on the limited hardware, large tasks are divided into several
subtasks and time-multiplexing the hardware resources are ad-
opted. Fig. 9 shows an example of temporal task partition[46],
where a large task is divided into three subtasks whose compu-
tational scale satisfies the hardware constraints. These three
subtasks temporally reuse the same hardware resource. The
configurations of the subtasks are sequentially sent to the
computing array to implement the respective functions. The
function of the large task is equivalently achieved.

3.2.3. Internal memory management
When multiple subtasks are executed on the same re-

Kernel code

……//Pre-loop code

for (i=0; i<4; i++)

{

Stage 1;

Stage 2;

Stage 3;

//iteration independent

}

……//Inter-loop code

for (i=0; i<2; i++)

{

Stage 4;

Stage 5;

//iteration dependent

}

……//Post-loop code

Pre-loop code

PEA micro

controller

Stage 0-1

Stage 0-2

Stage 0-3

Stage 1-1

Stage 1-2

Stage 1-3

Stage 0-4

Stage 0-5 Stage 1-4

Stage 1-5

Stage 2-1

Stage 2-2

Stage 2-3

Stage 3-1

Stage 3-2

Stage 3-3

Inter-loop code

Post-loop code

PE0 PE1 PE2 PE3

PEA

Time

Space

Fig. 7. Example of dividing and executing a kernel.

Code transformation &

optimization

Mapping & configuration

generation

Task partition

Task scheduling

Register allocation

Operator mapping

Memory mapping &

optimization

Configuration & control

code generation

Application

Reconfigurable

controller

Reconfigurable

datapath

Fig. 8. The compiler framework of a reconfigurable processor.

6 Journal of Semiconductors doi: 10.1088/1674-4926/41/2/021401

Y N Lu et al.: Architecture, challenges and applications of dynamic reconfigurable computing

configurable hardware in time-multiplexing manner, there
are possibly data dependencies between these subtasks.
Therefore, it is necessary to consider data interaction
between subtasks through internal memory in the process of
mapping and configuration generation.

Figs. 10(a) and 10(b) show the two main problems of in-
ternal data interaction that need to be addressed. The first
problem comes from data interaction when an operator has
multiple output targets, as shown in Fig. 10(a). A dynamic re-
configurable processor usually provides limited data manipula-
tions due to hardware complexity. When there is more than
one output targets (external output and internal data trans-
fer between subtasks) for an operator in a subtask, the stor-
age resources need to be effectively managed to reduce the
occupancy rate and to ensure the correctness. Techniques
such as variable life cycle analysis and operator reordering
can be used to reduce the occupancy rate of storage re-
source and improve the computing performance. The second
problem comes from the data interaction between subtasks.
When a subtask requires much intermediate data as input
and the storage locations of these data are scattered, it is ne-
cessary to rearrange these data for block operations. The re-
arrangement can extract the operation data required by the
current subtask and improve the efficiency of memory ac-
cess. Techniques such as subtask correlation analysis and
data splicing can be used to improve the efficiency of
memory access.

3.2.4. Configuration optimization
As mentioned in the previous sections, the hardware func-

tion of a dynamic reconfigurable processor is changed by
dynamically switching the configuration. For the configura-
tions of multiple subtasks, eliminating the redundancy in con-
figurations and compressing the configuration volume will
greatly shorten the configuration loading time. The reason
for the redundancy is that the operator connection graphs in
different subtasks have similar structures. Two techniques

can be used to eliminate the redundancy in configurations.
First, by analyzing the statistical correlation in the bit rate of
redundant information, traditional data compression meth-
ods can be utilized to reduce the configuration volume[47].
Second, direct analysis of the correlation of subtask DFGs can
reduce the generated configuration[48].

4. Challenges

Although there have been many successful CGRA
designs, which are superior in terms of energy efficiency and
flexibility, CGRA is still immature and far away from large-
scale commercial utilization because there are still some key
technologies and bottlenecks that have not been well re-
solved. Some of the existing technical challenges and pro-
posed solutions follow.

4.1. Cooperation of temporal and spatial mapping

Mapping an application written in a high-level program-
ming language to a reconfigurable chip is a complex issue. A
variety of techniques can be used together in the mapping
process. Ref. [49] proposed an aggressive pipelining method
for irregular applications on reconfigurable hardware. For
control flows in irregular applications that could not be pre-
dict by static analysis, the abundant spatial computing re-
sources are used at runtime to aggressively execute tasks
concurrently. Therefore, fine-grained parallelism in applica-
tions can be efficiently developed. After utilizing a combina-
tion of methods, the computing performance can be in-
creased by an order of magnitude. A polyhedral model that is
based mapping technology can also be adopted for perfor-
mance optimization. Taking into account parameters such as
dynamic reconfiguration, array calculation and cache access,
and using a joint optimization method of affine transforma-
tion and loop tiling to establish a performance model and a
power consumption model, the execution time of a task can
be reduced by about 20%[50].

4.2. Control-intensive task parallelization

Reconfigurable computing architectures are effective for
compute-intensive tasks, but how to perform control-intens-
ive tasks is a difficult problem. Exploring the parallelization of
control-intensive tasks on a centralized-controlled comput-
ing array is necessary. By giving a common mapping process
and utilizing techniques such as merging branches and condi-
tion computation, configuration fusion, and configuration
branch optimization, the configuration and execution time of
control tasks can be reduced and the performance is im-
proved by approximately 40%[51]. For the distributed-con-
trolled systems, the parallelization methods of the control-in-
tensive tasks on a distributed-controlled computing array is
adopted. Ref. [52] proposed a PE that supports triggered
configuration. The PE employs a structure that combines
trigger mechanism and composite configuration. Thus, the
instruction-level parallelism of complex control flows is effi-
ciently achieved, reducing the latency and execution cost
caused by control flow. Finally, the performance of pro-
cessing control-intensive tasks is improved by 20% to 140%.

4.3. Optimization of configuration organization

Reconfigurable hardware needs continuous configura-
tion to change the structure and function. It is important to
consider the size of the configuration. Generally, the amount

1

4

2

3

5

8

9

7
6

T1

T2

T3

1

4

2

3

5

8

9

7
6

T1

T2

T3

(a) (b)

Fig. 10. Illustration of internal memory management. (a) Multiple out-
put targets. (b) Communication between subtasks.

+ −

+ +

+ ×

+ −

− +

+

− +

+

+

T2 T2

PE array

+ ×

−+

+

T1

T3

T1

T3

Fig. 9. Temporal partition of task graph.

Journal of Semiconductors doi: 10.1088/1674-4926/41/2/021401 7

Y N Lu et al.: Architecture, challenges and applications of dynamic reconfigurable computing

of a FPGA configuration is about a dozen megabytes or tens
of megabytes, and the configuration time is several hundred
milliseconds to a few seconds, which is too long for a dynam-
ic reconfigurable CGRA. To achieve reconfiguration in a short
time, the first thing is to reduce the amount of configuration
information. Through analysis of the computational flow
graph, Ref. [53] proposed a hierarchical configuration genera-
tion technology based on isomorphic similarity matching of
subgraphs. The commonality of the DFG is extracted accord-
ing to the similarity matching and cross index between sub-
graphs. The total amount of configuration information can be
reduced by more than 70% and an optimized hierarchical or-
ganization of configuration is formed.

4.4. Dynamically loading configuration

Although the amount of configuration is reduced, it still
takes time to load the configuration onto the datapath. It is
found that it is unnecessary to send configuration all the
time, and some configuration may be resident in the
memory. Ref. [54] proposed a correlation-aware caching
strategy for configuration flow. An on-chip cache structure
and the prefetching method have been designed for group-
ing the configuration according to the computing tasks. Re-
dundant transmission of configuration flow in each layer is
eliminated. The configuration sets are converged down-
wards by layer. The gap of configuration flow is optimized by
using pipeline equalization. Consequently, the configuration
amount is reduced and the configuration speed is increased,
which results in a decrease in the configuration time.

These technologies relieve the problems of optimal gen-
eration, storage and loading of configuration information in
dynamic reconfigurable chips. Through the maximum paral-
lelization of configuration and execution, nanosecond-level
function reconfiguration is realized, providing the founda-
tion of both energy efficiency and flexibility for dynamic recon-
figurable chips.

5. Applications

From the current successful application of CGRAs, it can
be seen that they are more suitable for compute-intensive
and data-intensive applications. The following classifications
describe the current main applications of CGRAs.

5.1. Neural network

Since 2010, advances in neural networking technology
have driven the development of artificial intelligence. Deep
neural network (DNN), which is a basic supporting techno-
logy, requires complex calculations of large amounts of data
with frequent inter-layer communication. Research shows
that CGRA is a superior implementation of DNN because of
its high throughput computing and on-chip communication
capabilities. For example, Eyeriss[55] is based on the CGRA
structure to minimize the energy consumption of data mo-
vement by maximizing reuse of input data. Ref. [56] pro-
posed a runtime reconfigurable two-dimensional dataflow
computing engine, which can implement a variety of convo-
lutional NN operations in a systolic manner.

Thinker[57] is a reconfigurable hybrid-neural network pro-
cessor, which was proposed by our research team. Its energy
efficiency could be as high as 5.09-TOPS/W in 65 nm techno-
logy. It has two 16 × 16 reconfigurable heterogeneous PE ar-

rays. To accelerate hybrid-NNs, the PE arrays are designed to
support on demand partitioning and reconfiguration for pro-
cessing different NNs in parallel. Each PE in the array sup-
ports bit-width adaption to meet variant bit-width of neural
layers. Furthermore, a fused data pattern-based multi-bank
memory system is designed to exploit data reuse and guaran-
tee parallel data access. These design techniques improve
the PE utilization and computing throughput, as well as en-
ergy efficiency.

5.2. Cryptography

Cryptographic processing is also a computing-intensive
application, which is especially suited for CGRA-based imple-
mentations. Scholars have proposed many reconfigurable
cryptographic processors based on CGRA structure. For ex-
ample, Celator[58] is a reconfigurable coprocessor that imple-
ments block ciphers (AES and DES) and HASH function (SHA).
Cryptoraptor[59] is a reconfigurable cryptographic processor
that implements multiple symmetric cryptographic algori-
thms with a peak throughput of up to 128 Gbps for AES-128.
In addition to implementing encryption and decryption ope-
rations, CGRA also has some resistance to physical attacks.
CGRA uses its hardware resource redundancy and dynamic
real-time reconfigurable features to achieve randomization
of cryptographic operations in space and time, which greatly
increases the difficulty for attackers who wish to perform
physical attacks, such as electromagnetic attacks and fault
attacks. This is especially important for the security of crypto-
graphic algorithms, and it also reflects the superiority of
CGRA software-defined hardware.

5.3. Multimedia

Multimedia (e.g, voice, image and video) usually need to
code or decode abundant data. They are typical stream pro-
cessing applications that deal with different data in the same
way. These applications contain plenty of parallel calcula-
tions on macro blocks. CGRA performs well in stream pro-
cessing because of its "switching configurations to adapt the
application" and "one-time configuration, multi-time execu-
tion" features. There are a large number of CGRA structures
for this type of application. For example, the classic ADRES
has been applied to video processing (H.264/AVC decod-
ing[60]), image processing[61]. XPP-III and REMUS are also ap-
plied to video processing (MPEG4 and H.264/AVC decod-
ing[62]). Samsung applied a CGRA video processing platform
for 8K Ultra HD TV[63].

5.4. Signal processing

CGRAs can also be used in the field of signal processing
where the most important algorithms are fast Fourier trans-
form (FFT) and inverse FFT. For instance, ADRES has been ap-
plied to software-defined radio (SDR) signal processing (SDM-
OFDM) receivers[64] and MIMO SDM-OFDM baseband pro-
cessing[65]. FLEXDET, proposed in Ref. [66], is a multi-mode
MIMO detector based on reconfigurable processing. It is
reported that CGRAs can get a higher throughput than con-
ventional digital signal processors (DSPs) because of more
powerful computing resources and larger bandwidth inter-
face.

6. Conclusion

CGRA is the main form of dynamic reconfigurable comput-

8 Journal of Semiconductors doi: 10.1088/1674-4926/41/2/021401

Y N Lu et al.: Architecture, challenges and applications of dynamic reconfigurable computing

ing fabric. This paper surveys the important aspects of CGRA,
including the concept, architecture, compilation, existing chal-
lenges, and prospective applications. However, CGRA is not
as mature as FPGA and still has some challenges to over-
come. Since CGRA is superior in energy efficiency, area effi-
ciency and flexibility, and does well in several important app-
lication domains, it is predicted that CGRA will become an
alternative to some existing computing architectures.

Acknowledgments

This work is supported in part by the National Science
and Technology Major Project of the Ministry of Science and
Technology of China (Grant No. 2018ZX01028201), and in
part by the National Natural Science Foundation of China
(Grant No. 61672317, No. 61834002), and in part by the Nation-
al Key R&D Program of China (Grant No. 2018YFB2202101).

References

Prabhakar R, Zhang Y, Koeplinger D, et al. Plasticine: a reconfigur-
able architecture for parallel paterns. ACM/IEEE International Sym-
posium on Computer Architecture, 2017, 389

[1]

Nowatzki T, Gangadhar V, Ardalani N, et al. Stream-dataflow accel-
eration. ACM/IEEE International Symposium on Computer Architec-
ture, 2017, 416

[2]

Nicol C. A coarse grain reconfigurable array (CGRA) for statically
scheduled data flow computing. Wave Computing White Paper,
2017

[3]

https://www.darpa.mil/[4]
Kim S, Park Y H, Kim J, et al. Flexible video processing platform for
8K UHD TV. Hot Chips 27 Symposium, 2016, 1

[5]

http://www.samsung.com/semiconductor/minisite/exynos/prod
ucts/mobileprocessor/exynos-5-octa-5430/

[6]

PACT. http://www.pactxpp.com/[7]
https://newsroom.intel.com/news-releases/intel-tsinghua-uni-
versity-and-montage-technology-collaborate-to-bring-indigen-
ous-data-center-solutions-to-china/

[8]

Suzuki M, Hasegawa Y, Yamada Y, et al. Stream applications on
the dynamically reconfigurable processor. IEEE International Con-
ference on Field-Programmable Technology, 2004, 137

[9]

Sato T, Watanabe H, Shiba K. Implementation of dynamically recon-
figurable processor DAPDNA-2. IEEE VLSI-TSA International Sym-
posium on VLSI Design, Automation and Test (VLSI-TSA-DAT),
2005, 323

[10]

Horowitz M. Computing's energy problem (and what we can do
about it). IEEE International Solid-state Circuits Conference (IS-
SCC), 2014, 10

[11]

Tessier R, Pocek K L, Dehon A. Reconfigurable computing architec-
tures. Proc IEEE, 2015, 103(3), 332

[12]

Wijtvliet M, Waeijen L, Corporaal H. Coarse grained reconfigur-
able architectures in the past 25 years: Overview and classifica-
tion. 2016 International Conference on Embedded Computer Sys-
tems: Architectures, Modeling and Simulation (SAMOS), 2016,
235

[13]

Nowatzki T, Gangadhar V, Sankaralingam K, et al. Pushing the lim-
its of accelerator efficiency while retaining programmability. IEEE
International Symposium on High Performance Computer Archi-
tecture (HPCA), 2016, 27

[14]

Duranton M, Bosschere K D, Gamrat C, et al. The HiPEAC vision.
 European Network of Excellence on High Performance and Em-
bedded Architecture and Compilation, 2017, 12

[15]

Estrin G. Organization of computer systems—the fixed plus vari-
able structure computer. Proceeding of Western Joint Computer
Conference, 1960, 33

[16]

Hartenstein R W, Hirschbiel A G, Riedmuller M, et al. A novel ASIC
design approach based on a new machine paradigm. IEEE J Solid-
State Circuits, 1991, 26(7), 975

[17]

Chen D C, Rabaey J M. A reconfigurable multiprocessor IC for rap-
id prototyping of algorithmic-specific high-speed DSP data
paths. IEEE J Solid-State Circuits, 1994, 27(12), 1895

[18]

DeHon A, Wawrzynek J. Reconfigurable computing: what, why
and implications for design automation. Proceeding of 36th
ACM/IEEE Conference on Design Automation, 1999, 610

[19]

Xilinx Inc. All Programmable FPGAs [EB/OL]. http://www.xilinx.
com/products/silicondevice/fpga/index.html [2014-7-7]

[20]

http://sigarch.hosting.acm.org/2015/01/17/call-for-proposals-in-
tel-altera-heterogeneous-architecture-research-platform-pro-
gram/

[21]

Wingbermuehle J G, Cytron R K, Chamberlain R D. Superoptim-
ized memory subsystems for streaming applications. Internation-
al Symposium on Field-Programmable Gate Arrays, 2015

[22]

Putnam A, Jan G, Michael G, et al. A reconfigurable fabric for accel-
erating large-scale datacenter services. IEEE Micro, 2015, 35(3), 10

[23]

Goren S, Turk Y, Ozkurt O, et al. Achieving modular dynamic par-
tial reconfiguration with a difference- based flow. Proceeding of
the ACM/SIGDA International Symposium on Field Program-
mable Gate Arrays, 2013, 270

[24]

Coole J, G Stitt G. Intermediate fabrics: Virtual architectures for cir-
cuit portability and fast placement and routing. The eighth
IEEE/ACM/IFIP international conference on Hardware/software
codesign and system synthesis, 2010

[25]

Singh H, Lee M, Lu G, et al. MorphoSys: an integrated reconfigur-
able system for data-parallel and computation-intensive applica-
tions. IEEE Trans Comput, 2000, 49(5), 465

[26]

Mei B, Vernalde S, Verkest D, et al. ADRES: an architecture with
tightly coupled VLIW processor and coarse-grained reconfigur-
able matrix. International Conference on Field Programmable Lo-
gic and Application (FPL), 2003, 61

[27]

Baumgarte V, Ehlers G, May F, et al. PACT XPP—A self-reconfigur-
able data processing architecture. J Supercomput, 2003, 26(2),
167

[28]

Liu L, Deng C, Wang D, et al. An energy-efficient coarse-grained dy-
namically reconfigurable fabric for multiple-standard video decod-
ing applications. IEEE Custom Integrated Circuits Conference,
2013, 1

[29]

Chin S A, Sakamoto N, Rui A, et al. CGRA-ME: A unified frame-
work for CGRA modelling and exploration. IEEE 28th Internation-
al Conference on Application-specific Systems, Architectures and
Processors (ASAP), 2017, 184

[30]

Akbari O, Kamal M, Afzali-Kusha A, et al. PX-CGRA: Polymorphic ap-
proximate coarse-grained reconfigurable architecture. Design,
Automation & Test in Europe Conference & Exhibition (DATE),
2018, 413

[31]

Duch L, Basu S, Pe O M, et al. i-DPs CGRA: an interleaved-
datapaths reconfigurable accelerator for embedded bio-signal pro-
cessing. IEEE Embed Syst Lett, 2019, 11, 50

[32]

Voitsechov D, Port O, Etsion Y. Inter-thread communication in mul-
tithreaded, reconfigurable coarse-grain arrays. IEEE/ACM Interna-
tional Symposium on Microarchitecture (MICRO), 2018, 42

[33]

Amano H. A survey on dynamically reconfigurable processors. IE-
ICE Trans Commun, 2006, 89(12), 3179

[34]

Zain-ul-Abdin, Svensson B. Evolution in architectures and program-
ming methodologies of coarse-grained reconfigurable comput-
ing. Microprocess Microsyst, 2009, 22(3), 161

[35]

Dehon A. Fundamental underpinnings of reconfigurable comput-
ing architectures. Proc IEEE, 2015, 103(3), 355

[36]

Chattopadhyay A. Ingredients of adaptability: a survey of reconfig-
urable processors. VLSI Design, 2013, 10

[37]

Wang Y, Liu L, Yin S, et al. Hierarchical representation of on-chip
context to reduce reconfiguration time and implementation area

[38]

Journal of Semiconductors doi: 10.1088/1674-4926/41/2/021401 9

Y N Lu et al.: Architecture, challenges and applications of dynamic reconfigurable computing

https://www.darpa.mil/
http://www.samsung.com/semiconductor/minisite/exynos/products/mobileprocessor/exynos-5-octa-5430/
http://www.samsung.com/semiconductor/minisite/exynos/products/mobileprocessor/exynos-5-octa-5430/
http://www.pactxpp.com/
https://newsroom.intel.com/news-releases/intel-tsinghua-university-and-montage-technology-collaborate-to-bring-indigenous-data-center-solutions-to-china/
https://newsroom.intel.com/news-releases/intel-tsinghua-university-and-montage-technology-collaborate-to-bring-indigenous-data-center-solutions-to-china/
https://newsroom.intel.com/news-releases/intel-tsinghua-university-and-montage-technology-collaborate-to-bring-indigenous-data-center-solutions-to-china/
https://newsroom.intel.com/news-releases/intel-tsinghua-university-and-montage-technology-collaborate-to-bring-indigenous-data-center-solutions-to-china/
https://newsroom.intel.com/news-releases/intel-tsinghua-university-and-montage-technology-collaborate-to-bring-indigenous-data-center-solutions-to-china/
http://dx.doi.org/10.1109/JPROC.2014.2386883
http://dx.doi.org/10.1109/4.92017
http://dx.doi.org/10.1109/4.92017
http://dx.doi.org/10.1109/4.173120
http://www.xilinx.com/products/silicondevice/fpga/index.html
http://www.xilinx.com/products/silicondevice/fpga/index.html
http://sigarch.hosting.acm.org/2015/01/17/call-for-proposals-intel-altera-heterogeneous-architecture-research-platform-program/
http://sigarch.hosting.acm.org/2015/01/17/call-for-proposals-intel-altera-heterogeneous-architecture-research-platform-program/
http://sigarch.hosting.acm.org/2015/01/17/call-for-proposals-intel-altera-heterogeneous-architecture-research-platform-program/
http://sigarch.hosting.acm.org/2015/01/17/call-for-proposals-intel-altera-heterogeneous-architecture-research-platform-program/
http://sigarch.hosting.acm.org/2015/01/17/call-for-proposals-intel-altera-heterogeneous-architecture-research-platform-program/
http://dx.doi.org/10.1109/MM.2015.42
http://dx.doi.org/10.1109/12.859540
http://dx.doi.org/10.1023/A:1024499601571
http://dx.doi.org/10.1023/A:1024499601571
http://dx.doi.org/10.1109/LES.2018.2849267
http://dx.doi.org/urn:nbn:se:hh:diva-15050
http://dx.doi.org/10.1109/JPROC.2014.2387696
https://www.darpa.mil/
http://www.samsung.com/semiconductor/minisite/exynos/products/mobileprocessor/exynos-5-octa-5430/
http://www.samsung.com/semiconductor/minisite/exynos/products/mobileprocessor/exynos-5-octa-5430/
http://www.pactxpp.com/
https://newsroom.intel.com/news-releases/intel-tsinghua-university-and-montage-technology-collaborate-to-bring-indigenous-data-center-solutions-to-china/
https://newsroom.intel.com/news-releases/intel-tsinghua-university-and-montage-technology-collaborate-to-bring-indigenous-data-center-solutions-to-china/
https://newsroom.intel.com/news-releases/intel-tsinghua-university-and-montage-technology-collaborate-to-bring-indigenous-data-center-solutions-to-china/
https://newsroom.intel.com/news-releases/intel-tsinghua-university-and-montage-technology-collaborate-to-bring-indigenous-data-center-solutions-to-china/
https://newsroom.intel.com/news-releases/intel-tsinghua-university-and-montage-technology-collaborate-to-bring-indigenous-data-center-solutions-to-china/
http://dx.doi.org/10.1109/JPROC.2014.2386883
http://dx.doi.org/10.1109/4.92017
http://dx.doi.org/10.1109/4.92017
http://dx.doi.org/10.1109/4.173120
http://www.xilinx.com/products/silicondevice/fpga/index.html
http://www.xilinx.com/products/silicondevice/fpga/index.html
http://sigarch.hosting.acm.org/2015/01/17/call-for-proposals-intel-altera-heterogeneous-architecture-research-platform-program/
http://sigarch.hosting.acm.org/2015/01/17/call-for-proposals-intel-altera-heterogeneous-architecture-research-platform-program/
http://sigarch.hosting.acm.org/2015/01/17/call-for-proposals-intel-altera-heterogeneous-architecture-research-platform-program/
http://sigarch.hosting.acm.org/2015/01/17/call-for-proposals-intel-altera-heterogeneous-architecture-research-platform-program/
http://sigarch.hosting.acm.org/2015/01/17/call-for-proposals-intel-altera-heterogeneous-architecture-research-platform-program/
http://dx.doi.org/10.1109/MM.2015.42
http://dx.doi.org/10.1109/12.859540
http://dx.doi.org/10.1023/A:1024499601571
http://dx.doi.org/10.1023/A:1024499601571
http://dx.doi.org/10.1109/LES.2018.2849267
http://dx.doi.org/urn:nbn:se:hh:diva-15050
http://dx.doi.org/10.1109/JPROC.2014.2387696

for coarse-grained reconfigurable architecture. Sci Chin Inform
Sci, 2013, 56(11), 1
Liu L, Li Z, Yang C, et al. HReA: an energy-efficient embedded dy-
namically reconfigurable fabric for 13-dwarfs processing. IEEE
Trans Circuits Syst II, 2017, 65(3), 381

[39]

Asanovic K, Bodik R, Catanzaro B C, et al. The landscape of paral-
lel computing research: A view from Berkeley. Technical report,
Technical Report UCB/EECS-2006-183, EECS Department, Uni-
versity of California, Berkeley, 2006

[40]

Yin C Y, Yin S Y, Liu L B, et al. Front end design of task compiler for
reconfigurable multimedia processor. J Beijing Univ Posts Telecom-
mun, 2011, 34, 108

[41]

Li Y, Callahan T, Darnell E, et al. Hardware-software co-design of
embedded reconfigurable architectures. Proceedings of Design
Automation Conference, 2000, 507

[42]

So B, Hall M W. Increasing the applicability of scalar replacement.
Proceedings of the ACM Symposium on Compiler Construction,
2004, 185

[43]

Beletska A, Bielecki W, Cohen A, et al. Coarse-grained loop parallel-
ization: iteration space slicing vs affine transformations. Paral Com-
put, 2011, 37, 479

[44]

Jiang Y C, Wang J F. Temporal Partitioning data flow graph for dy-
namically reconfigurable computing. IEEE Trans VLSI Syst, 2007,
15, 1351

[45]

Yin C, Yin S, Liu L, et al. Temporal partitioning algorithm for a
coarse-grained reconfigurable computing architecture. Interna-
tional Symposium of Integrated Circuit, 2009, 659

[46]

Aslam N, Milward M, Erdogan A, et al. Code compression and de-
compression for coarse-grain reconfigurable architectures. IEEE
Trans VLSI Syst, 2008, 16, 1596

[47]

Yin S, Yin C, Liu L, et al. Configuration context reduction for
coarse-grained reconfigurable architecture. IEICE Trans Inform
Syst, 2012, E95-D, 335

[48]

Li Z, Liu L, Deng Y, et al. Aggressive pipelining of irregular applica-
tions on reconfigurable hardware. ACM/IEEE 44th Annual Interna-
tional Symposium on Computer Architecture (ISCA), 2017, 575

[49]

Liu D, Yin S, Liu L, et al. Polyhedral model based mapping optimiza-
tion of loop nests for CGRAs. 50th ACM/EDAC/IEEE Design Automa-
tion Conference, 2013, 1

[50]

Zhu J, Liu L, Yin S, et al. A hybrid reconfigurable architecture and
design methods aiming at control-intensive kernels. IEEE Trans
VLSI Syst, 2015, 23(9), 1700

[51]

Liu L, Wang J, Zhu J, et al. TLIA: Efficient reconfigurable architec-
ture for control-intensive kernels with triggered-long-instruc-
tions. IEEE Trans Paral Distrib Syst, 2016, 27(7), 1

[52]

Wang Y, Liu L, Yin S, et al. On-chip memory hierarchy in one
coarse-grained reconfigurable architecture to compress memory

[53]

space and to reduce reconfiguration time and data-reference
time. IEEE Trans VLSI Syst, 2014, 22(5), 983
Yang C, Liu L, Luo K, et al. CIACP: a correlation-and iteration-
aware cache partitioning mechanism to improve performance of
multiple coarse-grained reconfigurable arrays. IEEE Trans Paral Dis-
trib Syst, 2016, 27(99), 1

[54]

Chen Y H, Krishna T, Emer J S, et al. Eyeriss: an energy-efficient re-
configurable accelerator for deep convolutional neural networks.
IEEE J Solid-State Circuits, 2017, 52(1), 127

[55]

Farabet C, Martini B, Corda B, et al. NeuFlow: A runtime reconfigur-
able dataflow processor for vision. Computer Vision and Pattern
Recognition Workshops, 2011, 109

[56]

Yin S, Ouyang P, Tang S, et al. 0.6-to-5.09 TOPS/W reconfigurable
hybrid-neural-network processor for deep learning applications.
Symposium on VLSI Circuits, 2017, C26

[57]

Fronte D, Perez A, Payrat E. Celator: a multi-algorithm cryptograph-
ic Co-processor. International Conference on Reconfigurable Com-
puting and FPGAs, 2008, 438

[58]

Sayilar G, Chiou D. Cryptoraptor: High throughput reconfigur-
able cryptographic processor. IEEE/ACM International Confer-
ence on Computer-Aided Design (ICCAD), 2014, 155

[59]

Mei B, VeredaS F J, Masschelein B. Mapping an H.264/AVC de-
coder onto the ADRES reconfigurable architecture. International
Conference on Field Programmable Logic and Applications,
2005, 622

[60]

Hartmann M, Pantazis V, Aa T V, et al. Still image processing on
coarse-grained reconfigurable array architectures. J Sign Proces
Syst, 2010, 60(2), 225

[61]

Ganesan M K A, Singh S, May F, et al. H.264 decoder at HD resolu-
tion on a coarse grain dynamically reconfigurable architecture. In-
ternational Conference on Field Programmable Logic and Applica-
tions, 2007, 467

[62]

Kim S, Park Y H, Kim J, et al. Flexible video processing platform for
8K UHD TV. Hot Chips 27 Symposium, 2016, 1-1

[63]

Novo D, Moffat W, Derudder V, et al. Mapping a multiple an-
tenna SDM-OFDM receiver on the ADRES coarse-grained reconfig-
urable processor. IEEE Workshop on Signal Processing Systems
Design and Implementation, 2005, 473

[64]

Palkovic M, Cappelle H, Glassee M, et al. Mapping of 40 MHz
MIMO SDM-OFDM baseband processing on multi-processor SDR
platform. IEEE Workshop on Design and Diagnostics of Electronic
Circuits and Systems, 2008, 1

[65]

Chen X, Minwegen A, Hassan Y, et al. FLEXDET: flexible, efficient
multi-mode mimo detection using reconfigurable ASIP. IEEE Inter-
national Symposium on Field-Programmable Custom Comput-
ing Machines, 2012, 69

[66]

10 Journal of Semiconductors doi: 10.1088/1674-4926/41/2/021401

Y N Lu et al.: Architecture, challenges and applications of dynamic reconfigurable computing

http://dx.doi.org/10.1007/s11432-013-4842-5
http://dx.doi.org/10.1007/s11432-013-4842-5
http://dx.doi.org/10.1109/TCSII.2017.2728814
http://dx.doi.org/10.1109/TCSII.2017.2728814
http://dx.doi.org/10.1016/j.parco.2010.12.005
http://dx.doi.org/10.1016/j.parco.2010.12.005
http://dx.doi.org/10.1016/j.parco.2010.12.005
http://dx.doi.org/10.1109/TVLSI.2007.909806
http://dx.doi.org/10.1109/TVLSI.2007.909806
http://dx.doi.org/10.1109/TVLSI.2008.2001562
http://dx.doi.org/10.1109/TVLSI.2008.2001562
http://dx.doi.org/10.1587/transinf.E95.D.335
http://dx.doi.org/10.1587/transinf.E95.D.335
http://dx.doi.org/10.1109/TVLSI.2014.2349652
http://dx.doi.org/10.1109/TVLSI.2014.2349652
http://dx.doi.org/10.1109/TPDS.2015.2477841
http://dx.doi.org/10.1109/TVLSI.2013.2263155
http://dx.doi.org/10.1109/TPDS.2016.2554278
http://dx.doi.org/10.1109/TPDS.2016.2554278
http://dx.doi.org/10.1109/TPDS.2016.2554278
http://dx.doi.org/10.1109/JSSC.2016.2616357
http://dx.doi.org/10.1007/s11265-008-0309-0
http://dx.doi.org/10.1007/s11265-008-0309-0
http://dx.doi.org/10.1007/s11432-013-4842-5
http://dx.doi.org/10.1007/s11432-013-4842-5
http://dx.doi.org/10.1109/TCSII.2017.2728814
http://dx.doi.org/10.1109/TCSII.2017.2728814
http://dx.doi.org/10.1016/j.parco.2010.12.005
http://dx.doi.org/10.1016/j.parco.2010.12.005
http://dx.doi.org/10.1016/j.parco.2010.12.005
http://dx.doi.org/10.1109/TVLSI.2007.909806
http://dx.doi.org/10.1109/TVLSI.2007.909806
http://dx.doi.org/10.1109/TVLSI.2008.2001562
http://dx.doi.org/10.1109/TVLSI.2008.2001562
http://dx.doi.org/10.1587/transinf.E95.D.335
http://dx.doi.org/10.1587/transinf.E95.D.335
http://dx.doi.org/10.1109/TVLSI.2014.2349652
http://dx.doi.org/10.1109/TVLSI.2014.2349652
http://dx.doi.org/10.1109/TPDS.2015.2477841
http://dx.doi.org/10.1109/TVLSI.2013.2263155
http://dx.doi.org/10.1109/TPDS.2016.2554278
http://dx.doi.org/10.1109/TPDS.2016.2554278
http://dx.doi.org/10.1109/TPDS.2016.2554278
http://dx.doi.org/10.1109/JSSC.2016.2616357
http://dx.doi.org/10.1007/s11265-008-0309-0
http://dx.doi.org/10.1007/s11265-008-0309-0
http://dx.doi.org/10.1007/s11432-013-4842-5
http://dx.doi.org/10.1007/s11432-013-4842-5
http://dx.doi.org/10.1109/TCSII.2017.2728814
http://dx.doi.org/10.1109/TCSII.2017.2728814
http://dx.doi.org/10.1016/j.parco.2010.12.005
http://dx.doi.org/10.1016/j.parco.2010.12.005
http://dx.doi.org/10.1016/j.parco.2010.12.005
http://dx.doi.org/10.1109/TVLSI.2007.909806
http://dx.doi.org/10.1109/TVLSI.2007.909806
http://dx.doi.org/10.1109/TVLSI.2008.2001562
http://dx.doi.org/10.1109/TVLSI.2008.2001562
http://dx.doi.org/10.1587/transinf.E95.D.335
http://dx.doi.org/10.1587/transinf.E95.D.335
http://dx.doi.org/10.1109/TVLSI.2014.2349652
http://dx.doi.org/10.1109/TVLSI.2014.2349652
http://dx.doi.org/10.1109/TPDS.2015.2477841
http://dx.doi.org/10.1007/s11432-013-4842-5
http://dx.doi.org/10.1007/s11432-013-4842-5
http://dx.doi.org/10.1109/TCSII.2017.2728814
http://dx.doi.org/10.1109/TCSII.2017.2728814
http://dx.doi.org/10.1016/j.parco.2010.12.005
http://dx.doi.org/10.1016/j.parco.2010.12.005
http://dx.doi.org/10.1016/j.parco.2010.12.005
http://dx.doi.org/10.1109/TVLSI.2007.909806
http://dx.doi.org/10.1109/TVLSI.2007.909806
http://dx.doi.org/10.1109/TVLSI.2008.2001562
http://dx.doi.org/10.1109/TVLSI.2008.2001562
http://dx.doi.org/10.1587/transinf.E95.D.335
http://dx.doi.org/10.1587/transinf.E95.D.335
http://dx.doi.org/10.1109/TVLSI.2014.2349652
http://dx.doi.org/10.1109/TVLSI.2014.2349652
http://dx.doi.org/10.1109/TPDS.2015.2477841
http://dx.doi.org/10.1109/TVLSI.2013.2263155
http://dx.doi.org/10.1109/TPDS.2016.2554278
http://dx.doi.org/10.1109/TPDS.2016.2554278
http://dx.doi.org/10.1109/TPDS.2016.2554278
http://dx.doi.org/10.1109/JSSC.2016.2616357
http://dx.doi.org/10.1007/s11265-008-0309-0
http://dx.doi.org/10.1007/s11265-008-0309-0
http://dx.doi.org/10.1109/TVLSI.2013.2263155
http://dx.doi.org/10.1109/TPDS.2016.2554278
http://dx.doi.org/10.1109/TPDS.2016.2554278
http://dx.doi.org/10.1109/TPDS.2016.2554278
http://dx.doi.org/10.1109/JSSC.2016.2616357
http://dx.doi.org/10.1007/s11265-008-0309-0
http://dx.doi.org/10.1007/s11265-008-0309-0

